

Page 1 of 3

COMP222 Tutorial 4
Fun with physics

The aim of this tutorial is to familiarise with the use of the jBullet physics engine, which is part
of jME.

We pick up from where we finished last time. For your convenience, you can download the
Tutorial4.zip project, which contains models and code you were supposed to develop last
time from http://intranet.csc.liv.ac.uk/~konev/COMP222/tutorials/Tutorial4.zip To import
the project into your workspace, go File"Import Project"From ZIP…

The tutorial is based on the sample code supplement to one of the core books, Ruth
Kusterer: jMonkeyEngine 3.0: Beginner’s guide. PACT publishing, 2013. The code can be
found online, https://github.com/jMonkeyEngine/BookSamples Specifically, we use
https://github.com/jMonkeyEngine/BookSamples/blob/master/src/chapter06/PhysicsFallin
gBricks.java

The final code can be found at
http://intranet.csc.liv.ac.uk/~konev/COMP222/tutorials/ThrowFlowers.java however, I
would encourage you follow the steps one by one rather copy from mine.

By default, jME uses a Java version of the popular Bullet physics engine,
http://bulletphysics.org/wordpress/ In Bullet, rigid body entities can be of one of three kinds:

• Static. A Static entity can interact with dynamic entities but stays stationary. We will make
the table static.

• Kinematic. A kinematic entity interacts with the dynamic entities but is not itself subject
to physics control. We will make the dancing monkey a kinematic entity.

• Dynamic. Dynamic entities interact with other physics bodies and are controlled by the
laws of physics. We will through dynamic flowers at the monkey.

Tutorial 4 tasks:
1. Initialise the physics engine by adding the following lines to the end of the

SimpleInitApp() method:

bulletAppState = new BulletAppState();

stateManager.attach(bulletAppState);

When the SDK highlights an error, click on the light bulb and select Create field
“bulletAppState” in mygame.ThrowFlowers

2. Make the table a static rigid physics entity.

RigidBodyControl tControl = new RigidBodyControl(0);

table.addControl(tControl);

bulletAppState.getPhysicsSpace().add(tControl);

Notice that the RigidBodyControl constructor takes the mass of an object as
input. The value of 0 indicates that the entity is static.

Page 2 of 3

3. Make the monkey a kinematic rigid physics entity.

RigidBodyControl mControl = new RigidBodyControl(10);

monkey.addControl(mControl);

bulletAppState.getPhysicsSpace().add(mControl);

mControl.setKinematic(true);

Notice that a monkey is a body of mass 10kg controlled as before via the
simpleUpdate() method.

4. We will through dynamic flowers at the monkey. Copy the ActionListener
and shootCannonBall code from
https://github.com/jMonkeyEngine/BookSamples/blob/master/src/chapter06/P
hysicsFallingBricks.java

5. Refactor the code to rename shootCannonBall to throwFlower and fix
any undeclared fields and missing imports issues. We will use a flower model
instead of a ball (I’ve included a simple Blender model into the Tutorial4.zip
project, but please consider modelling a flower yourself).

public void throwFlower() {

Node flowerNode = (Node)

 assetManager.loadModel("Models/flower.j3o");

 flowerNode.scale(0.1f);

flowerNode.setLocalTranslation(

 cam.getLocation());

 rootNode.attachChild(flowerNode);

flowerNode.setShadowMode(

 RenderQueue.ShadowMode.Cast);

 RigidBodyControl flowerPhy = new

 RigidBodyControl(.5f);

 flowerNode.addControl(flowerPhy);

flowerPhy.setLinearVelocity(

 cam.getDirection().mult(10));

 flowerPhy.setAngularVelocity(new

 Vector3f(0, 5, 0));

}

6. It’s time to tune physics. Notice that the current implementation may suffer from
interpenetration and tunnelling.

Page 3 of 3

To reduce these effects, add the following two lines to the throwFlower
method:

flowerPhy.setCcdSweptSphereRadius(1f);

flowerPhy.setCcdMotionThreshold(0.001f);

It will make the physics engine use extruded geometry rather than collision
shapes for the flower. While this reduces interpenetration and tunnelling, both
might still occur. They can be further addressed by making the physics engine
update faster. Add the following line to the simpleInitiApp method.

 bulletAppState.getPhysicsSpace().setAccuracy(1/300f);

This will make jBullet update the physics state 300 times per second. Notice that
this can drastically increase the CPU load.

7. You can debug your collision shapes by adding

bulletAppState.getPhysicsSpace().enableDebug(

assetManager);

to the simpleInitApp method.

